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Abstract

To date, altimetry from space has mainly been limited to nadir-looking-type
instruments because of the difficulty of realising a precise wide-swath radar altimeter,
A concept is presented that can be used to perform altimetry measurements over
points along directions other than nadir, by making use of a passive instrument. The
method is applied here to ocean altimetry in particular.

This concept, based on the existence of sources of opportunity, consists of
combining the direct signal and the signal that is reflected by the Earth’s surface to
obtain the desired measurement. It can be regarded as a multistatic radar for which
the transmitters and the receivers belong to different systems. Because of the
combination of direct and reflected signals, this concept has been called the ‘Passive
Reflectometry and Interferometric System’ (PARIS).
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1. Introduction

2. Specular reflection
point computation

As was recognised during the Consultative Meeting on Imaging Altimeter
Requirements and Techniques held in June 1990 at Mullard Space Science Laboratory
(UK), the ability to carry out high-precision ocean altimetry over a swath with high
spatial resolution would revolutionise many fields of Earth science: ‘Some form of
multi-beam altimetry would offer the possibility of achieving satisfactory sampling of
the ocean mesoscale flows, and would, in addition, improve the ability to study other
spatially and temporally variable oceanographic phenomena such as wave and wind
fields, and ocean sea-ice interactions’ (see Ref. 1). The PARIS concept is directed
towards such a multi-beam altimetry objective.

A number of systems were identified as possible candidates for the different
scientific purposes, and the main parameters relating to the performance of each
system — mnamely vertical precision, spatial resolution and swath — have been
studied. The different types of systems that were considered and their associated
performances are presented in Table 1, the constellation of n pulse-limited altimeters
being the one recommended by the study team for ocean applications and some
specific land/ice studies'.

A new concept for ocean altimetry is presented which consists basically of taking
signals of opportunity, which are reflected by the ocean surface, and combining them
with the direct path signal, in order to provide an estimate of the ocean’s height over
the geoid*. There are two major aspects to PARIS: the first is that the altimetry is
performed in a bistatic configuration and therefore at points off-nadir; and the second
is the use of signals of opportunity. Bistatic altimetry is still pulse-limited, and could
save half the number of satellites in the recommended n-satellite pulse-limited
constellation without narrowing the swath"?.

The study presented here describes the PARIS concept from system geometry up
to instrument configuration. A preliminary analysis is given with the intention of
presenting the overall concept, leaving aside some of the more detailed points that still
require further study. A numerical example used to illustrate the analysis relies on the
satellites of the Global Positioning System (GPS) as sources of opportunity”.
Altimetry is performed along about five subtracks each 15 km wide, which would be
spread over a swath of 1000 km. Because of the limited bandwidth of the GPS signals,
the height accuracy performance obtained is only 0.7 m. If opportunity signals were
available with bandwidths of a few hundred MHz, centimetre-level accuracy would
also be feasible.

Table 1. Likely instrument performance characteristics

Instrument Vert. precision  Spatial resolution Swath
(m) (m) (km)
Across-track-scanning phased-array altimeter 5 300 100
Interferometric side-looking radar altimeter 3 30 100
with synthetic aperture
Small-dish interferometric altimeter 0.1 10 k 50
Single pulse-limited altimeter 0.1 10 —
Constellation of n pulse-limited altimeters 0.02 10 k —_
Pencil-beam beam-limited altimeter 1 500 5

In this section the coordinates of the point of specular reflection are computed for
the geometry of the system shown in Figure 1, assuming a spherical Earth.

Let xy be the plane containing transmitter, receiver and reflection point, T(x,.y)
the transmitter point, R(x,,y,) the receiver point, P(x,y) the point of specular
reflection, ¢ the angular polar coordinate of P and r the radius of the Earth. Letx’y’
be a system of coordinates that is obtained by rotating the xy coordinates and angle

¢ counterclockwise and then translating it along the new +x-axis a distance equal to
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the radius of the sphere r. Then we have the following relationship between xy and

x'y':

X cos ¢ sin ¢ [x r
L B[]

We first transform the transmitter and receiver coordinates to the x'y’ system

(X' cos ¢ sin ¢ [ x, [
—sin ¢ cos ¢ | y,jl [

(x," =[ cos ¢ sin ¢ "x,} 3 [r_

—sin ¢ cos | |y,

(1

)

3

because in this x"y” system the condition for specular reflection (Snell’s law) can be

easily expressed as

1o T 4
Vi Yr
Substituting Equations 2 and 3 into Equation 4 gives
x,cos<b+y,sinq5—r_ X, cos ¢ +y.sing — r 5)
—X, 8in ¢ + y, cos ¢ —Xx, sin ¢ + y, cos ¢
and operating this expression one obtains
2(xx,—yy,) sin ¢ cos ¢ — (xy,+yx,)(cos’ ¢ — sin® @) —
r sin ¢(x,+x,) + r cos p(y,+y,) =0 ©6)
Making the following change of variable
t=tan ® )
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Figure 1. System geometry for computation of
the coordinates of the specular reflection point
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Equation 6 becomes

2t 1-7* ) 1—-12\2 2t \2
—_Vv YV —_—— - ) + [ —_ — —
202, =y, 7 130 (X, tyx, <1+12 I3

2
2t -
r—s (x,+x,) +r v +y) =0 8
l+12( T, 1412 Oty

and arranging this expression, the equation of the specular point can finally be written
as (spherical mirror equation)

6'41‘4 + c3t3 + c2t2 +cot+c=0 )
where
t = tan g (10)
co = ey tyx) — rtyy) (11)
cp = —40pe,—yy,) + 2r(xt+x,) (12)
€y = —6(xy, +yx,) (13)
c3 = 4(xp—yy,) + 2r(x,+x,) (14)
€y = (Y + rty) (5)

We now proceed to calculate the distance from the receiver to the point of
specular reflection as a function of the elevation of the transmitter above the local
horizon. For doing this and without loss of generality, we shall assume the
receiver to be located along the y-axis at an altitude of & metres over the Earth’s
surface, so that its coordinates are

x, =0 y, = r+h (16)

The coordinates of the transmitter T(x,,y,) can be expressed in terms of the elevation
angle 8 above the local horizon plane at the receiver location using the following
relations, as directly derived from Figure 2:

T
sin <— + B) .
2 _sinvy

X, = r,cos (B+7); y, = r, sin B+v); = an
r, r+h

where r, is the orbital radius of the transmitter. Manipulating the previous
expressions, one obtains

r+h)?® :
X =rcosf8 1 - >— cos” B—(r+h) sin 8 cos 8 (18)
r
. (r+h?*
¥y =rsinf 1 - > cos B + (r+h) cos® 8 19
r

t
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2.1. Numerical example: GPS transmitters
The quantities that will be computed are the distance from the receiver to the
specular reflection point R,

(20

and the arc length s from the subreceiver point to the specular reflection point

(o)

as a function of the elevation 3 of the transmitter over the local horizon at the receiver
location, as indicated in Figure 2.
In the case where the transmitters are the GPS satellites, we have

€2y

r = 26.5%10° m (22)
and we take the Earth’s radius r=6370 km.

Three scenarios have been considered regarding the receiver: a spacecraft at
700 km, an aircraft at 10 km and an aircraft at 1 km altitude. Using the previous
equations and values, we obtain the following results:

— Spacecraft at =700 km altitude:

Elevation Arc length Distance

B (deg) s (km) R, (km)
0 1551 1774
10 1206 1449
20 936 1209
30 726 1036
40 557 913
50 418 827
60 299 768
70 193 729
80 95 707
90 0 700
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Figure 2. Geometry used to express
transmitter coordinates in terms of its

elevation angle (8) above the local horizon

plane at the receiver location
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Figure 3. Geometric locus of constant delay
between direct and reflected paths
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— Aircraft at h=10 km altitude:

Elevation Arc length Distance

B (deg) s (km) R; (km)
0 204.8 205.2
10 52.6 53.6
20 26.9 28.7
30 17.1 19.8
40 11.8 15.5
50 8.3 13.0
60 5.7 11.5
70 3.6 10.6
80 1.7 10.1
90 0.0 10.0

— Aircraft at =1 km altitude:

Elevation Arc length Distance
B (deg) s (km) R, (km)
0 65.052 65.064

10 5.628 5.716

20 2.746 2.923
30 1.732 2.000
40 1.197 1.560
50 0.844 1.309
60 0.577 1.155
70 0.365 1.064
80 0.182 1.016
90 0.000 1.000

From these tables, it can be concluded that the specular reflection points
corresponding to GPS satellites at elevations greater than about 40° over the local
receiver horizon are within a cone with vertex at the receiver point, with a half angle
of about 45°, and with its axis aligned along the receiver nadir direction.

2.2. Iso-line computation

In this Section the lines of constant range and constant Doppler for the system are
studied. Exact equations are only derived for the constant-range lines when the
transmitter is at the zenith of the receiver. In any other case, only a qualitative result
for the iso-range lines is presented. In the case of the lines of constant Doppler, very
reasonably approximated results are shown.

Iso-range lines
The iso-range lines are defined as those points for which the relative delay between

the direct signal and the reflected signal is the same. This condition can be written,
with reference to Figure 3, as

TP+ PR - TR =K (23)
where T is the transmitter point, R the receiver point, and P a point on the Earth’s

surface for which the path difference is X metres.

We assume that the positions of the transmitter and the receiver are known from
the navigation information provided by the transmitted signals themselves and that
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therefore the distance 7R is a known constant in Equation 23. For this reason,
we may write the following equivalent expression for the iso-range lines:

P+ PR =k Q4)
with k being a constant equal to
k=K+ TR 25)

Equation 24 is the equation of an ellipsoid of revolution with foci at the transmitter
point T and at the receiver point R as depicted in Figure 3. The intersection of this
ellipsoid and the surface of the Earth defines a particular iso-range line. The family
of iso-range lines is generated when k is allowed to take different values.

The instrument measures the quantity k and the range processor uses several values
of this delay separated by one code chip to perform range discrimination. In order
to find the width of the strip on ground defined by two iso-range lines one code chip
apart, we have to know the gradient of k as a function of the point P; that is

1 ds
k= — = = (26)
Vk dk

where k; is the spatial sensitivity of the instrument and s is the coordinate measured
along a coordinate line perpendicular to the iso-range lines.

In general, the intersection of the ellipsoid defined by Equation 24 and the Earth’s
surface (modelled also as an ellipsoid of revolution) gives a curve which is not flat.
We start the analysis by considering the general case where the transmitter is in any
arbitrary direction, but later we will constrain the study to the particular case in which
the transmitter is in the zenith direction of the receiver. For this particular
configuration, we will calculate the iso-range lines and the spatial sensitivity of the
instrument. The conclusions that are applicable to the general case will be pointed out.
The Earth will always be approximated by a sphere.

The general case is shown in Figure 4. For the coordinates, we choose an Earth-
centred coordinate system such that the receiver is in the x-axis and the transmitter
is in the xy plane, so that

T= (5,05 R=@x.00); P=(xyg2 27
\ Z
Earth
C y
// 7 e
-~ <. p X,/, /’/
S -
R ——————— Z— V/ ///
Xr y , ’ xt
P
7
d
T,
Iateietaintind R *7 _______ Figure 4. General geometry for the
X t determination of the iso-range lines on the
Earth’s surface as the intersection of the
constant-delay locus and the Earth’s sphere
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Then. the ellipsoid defined by Equation 24 can be written as

V(v—x)T + (v=y) 4 T F Nmy)T by b A 128)
and the equation of the Earth's sphere as

A= (29)
The iso-range lines are defined by the intersection of the ellipsoids and the Earth’s
sphere. When this intersection is calculated. the following equation is found tor the
projection of the iso-range lines onto the xv plane:

av’ b ey tdvtey =0 (30

where the coefficients are given by

a = Hx—x)° 3
b= 4y} (32)
¢ = 8(x,—x,)y, (33)
d = —HxiH+vi—xD) (x,—x,) + WG, +x,) (34
e = —diHyi—xI)y, + Ty, (3$)
f= (yvi-x)? — 2N+ v+ )+ & (36)

At this point we restrict the analysis to the case when the transmitter is in the zenith
direction of the receiver. i.e. when y,=0. In this case. the projection of the iso-range
lines onto the xy plane can be written as

AV + Br+C=0 (37)
with

A = dx,—x,)’ (38)

B = —4(x,+x) [(x,—x,)° — k%] (39)

C = (x,+x)° (x,—x,)° — 2K°Q2r°+x74x) + &* (40)

The projections of the iso-range lines onto the vy plane are then given by

~B VB oaAC

X = ————-T 41)

which are lines parallel to the y-axis. It can be shown by considering the values of

x and & at the sub-receiver point that only the positive sign of the square root gives

the correct solution. Taking this into account, the equations of the iso-range lines are
finally obtained as

2, 2 2

y izt =t = k) (42)

with
EA—x)? = K] + 2o k2= (y,—x,) (6, — 1)

xtky = 3
2(x,~x,)° 5
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The iso-range lines are thus circles parallel to the yz-plane and centred about the
x-axis, as depicted in case (a) of Figure 5. The range of values of k£ expands from a
minimum value at the sub-receiver point to a maximum value at the point of tangency
to the Earth’s sphere from the receiver point. These two limits, which are easily
derived, are

(,—x,) + 2(t,—r)<k< /x,2+r2 <1 - 25’) + Vx2—p? (44)

’,

Now we compute the spatial sensitivity of the instrument. For that we first write
Equations 37—40 in the form

k* —2Dk* + E=0 (45)
with

D = (x,—x)7 + (x,—x) + 2(r+x)(r—x) (46)

E = [(x—x)7 = (=0 (47)

In this form, we can calculate the value of k as a function of the x-coordinate by
solving Equation 45:

k¥ = D+VD*—E 48)

Making the same considerations about the sign of the square root as in the derivation
of the iso-range lines, we find that only the positive sign gives the right solution. Thus,
after some manipulations, we obtain

Kx) = (,=x)°% + (x,—x)% + 20r+x)(r—x) +

V[0 + r+0C=0lE =07 + (+x)r=x)] (49)
The x-coordinate is related to the length of the arc s measured from the subreceiver
point along any great circle as
s

X = rcos — (50)
R

Taking this relation into Equation 49, we find the value of k along the arc s:

s
kz(s = x24x2=2r(x,+x,) cos — + 2r* +
t r 1 r. r

} s
+2 <xf ~ 2x,r cos SR r2> <xf — 2x,r cos — + r2> (51
r r

The arc length coordinate lines are perpendicular to the iso-range lines and
therefore the gradient of k(s) is given by

OB dk’(s)
ds 2k(s) ds

(52)

Performing the derivation of Equation 51 and substituting the expressions obtained
into the equation of the gradient, the following result for the spatial sensitivity of the
instrument is finally found:

1 VN(S)
k= — = (53)
vk D(s)
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Figure 5. Iso-range lines: (a) transmitter at
receiver’s zenith; (b) transmitter at arbitrary

elevation
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with

s
N(s) = x>+x2-2r(x,+x,) cos — + 2t +
r

| s
2 <rf — 2xrcos — + r2> <x3 — 2x,r cos — + r2> (54)
r r

2 S 2 2 S .2
x| x7—2x,r cos —+r°)+x,[x; — 2, cos —+r

r r

5 5
\/(x,z—lx,r cos —+r2> <x3—2x,r cos —+r2>
r r

(55)

s
D(s) = sin — | (x,+x)+
r

The arc length expands from the sub-receiver point to the point of tangency to the
Earth’s sphere from the receiver point. These limits, which are easy to calculate, are:

0=s=< arccos - (56)

Xr

The spatial sensitivity of the instrument for different arc lengths has been computed
for a spacecraft scenario. The results are shown in the following table, along with the
spatial resolution that would be achieved in the case of using the GPS C/A and P
codes:

s ky=ds/dk o, C/A pg P
(km) (m/m) (m) (m)
0 @ e 0
10 62 18600 1860
100 6 1800 180
200 3.2 960 96
500 14 420 42
800 1.1 330 33
1100 09 270 27
3030 0.6 180 18

This table shows that the sensitivity is better for longer distances from receiver to
target than for shorter ones. The best sensitivity is obtained at the point of tangency
and is about 0.6. Near the sub-receiver point, the sensitivity is very poor as it goes
to infinity. For ranges corresponding to arc lengths larger than about 200 km, the
sensitivity is better than 3.

When the transmitter is at the zenith of the receiver, the point of specular reflection
coincides with the sub-receiver point and we have just seen that the iso-range curves
are distributed concentrically around this point, as shown in case (a) of Figure 5. This
characteristic of the pattern of the iso-range lines — that they are concentrically
distributed around the point of specular reflection — is also valid for the case when
the transmitter is not at the zenith of the receiver.

When the transmitter is at other elevation than zenith, the specular point will be
somewhere on the Earth’s surface between the receiver and the transmitter, as was
shown in the section dedicated to the computation of the specular reflection point. In
this case, the iso-range lines will also be concentric around the point of specular
reflection, and the separation between them will decrease as we go further away from
the point of specular reflection. This general result has been depicted in case (b) of
Figure 5, where the point of specular reflection P, appears displaced away from the

subsatellite point and towards the transmitter, which is assumed to be located to the
right of the figure.
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Iso-Doppler lines
First, let us consider the general case as depicted in Figure 6. All three points,
transmitter, receiver and target have some velocity with respect to an Earth-centred
inertial coordinate system. As the Doppler frequency is proportional to the relative
radial velocity, we calculate the relative radial velocities between the three points.
The relative radial velocity for the signal received through the direct path is

Vi = (Fr - r’t) L4 lTn (57)
where

v, is the modulus of the radial velocity between transmitter and receiver along the
direct path

v, is the velocity vector of the transmitter

v, is the velocity vector of the receiver

i, is the unit vector pointing from receiver to transmitter

and a dot (e ) denotes scalar product of vectors.

The sign has been chosen so that a positive radial velocity means that transmitter
and receiver are approaching each other.
On the other hand, the relative radial velocity involved with the signal received

through the reflected path is
Vy = (r'r_‘_';y) L4 Erp + (Fp—‘—);).ﬁpr (58)
where

v, is the modulus of the radial velocity between transmitter and receiver along the
reflected path

v, is the velocity vector of the target

i, is the unit vector pointing from receiver to target

Iy, is the unit vector pointing from target to transmitter.

The difference in radial velocity between the direct and the reflected paths is
proportional to the Doppler frequency between the direct and the reflected signals f},.
This difference is given by

)\fD = V=V (59)
k7
t
T
e .
Ut
R
U,
- P
vl‘
->
Upt Earth
P ->
p
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Figure 6. Geometry for the determination of

the iso-Doppler lines
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Figure 7. Iso-range and iso-Doppler lines in a
bi-state configuration. The iso-range lines form
closed contours around the point of specular
reflection P, which is oriented towards the
transmitter location. The iso-Doppler lines are
hyperbolas (assuming a far transmitter),
oriented in the direction of the velocity of the
receiver. Both families of curves are distorted
compared to the case of synthetic aperture
radar

342

Substituting the expressions for v, and v, into Equation 59, we obtain

NMp = (F,—7,) @il + (V,—V) @iy, — (V,—V) @il (60)
Now we introduce the simplification that was anticipated, namely we assume that the
distance between receiver and target is much smaller than the distance from either of
these two to the transmitter, so that

lTr! = [[pl (61)
Introducing this approximation into Equation 60, we find that
Np = (7= ) @iy, + (= V) @il (62)

We now look in detail at the right-hand side of Equation 62. The first term is the one
found in slant Synthetic Aperture Radar (SAR), except for a factor of 2 due to the
monostatic operation of SAR™®. The second term depends on the target point only
through its velocity v,. As the target velocity is due to the Earth’s rotation, which is
approximately the same for all points in the footprint, in a first approximation we can
consider that this second term is a known constant over the receiver antenna footprint.

If the Earth’s rotation speed in neglected, i.e. is v,=0, then Equation 62 becomes

)‘fD = ‘—;r. ’Trp - Vr' ﬁrt (63)
As the second term on the right-hand side is a constant, which is assumed to be

known, the iso-Doppler lines will be contained in the following family of cones:

Fr. l_irp = kD (64)
where kp is a constant given by
kp = NMp + Ve, (65)

The intersection of these cones and the Earth’s sphere gives the iso-Doppler lines. If
the Earth’s surface is approximated by a plane, the well-known family of hyperbolic
lines used in slant SAR is obtained, as shown in Figure 7. Note, however, that
although the pattern is the same, the value of the Doppler frequency for each curve
will have a constant difference with respect to the usual SAR case.

b

|
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The conclusion is that, in a first approximation, the pattern of iso-Doppler lines is
the same as the usual one found in slant SAR. The small difference stems from the
dispersion of radial velocities over the footprint with respect to the transmitter, which
is estimated to be in the order of 50 m/s for points 400 km apart.

A further difference with respect to the case of monostatic slant SAR is that the
familics of iso-range and iso-Doppler curves can be oriented in different directions,
depending mainly on the direction of the transmitter and the velocity of the receiver.
This is illustrated in Figure 7 where the transmitter is assumed to be located along
the x-axis, while the receiver is moving in a direction 45° away from this axis. The
iso-range lines appear oriented towards the transmitter, while the iso-Doppler lines
are oriented along the direction of motion of the receiver.

The signal-to-noise ratio (SNR) is computed in two steps:
— SNR for one pulse
— SNR for several pulses.

By ‘pulse’ we mean one chip of the pseudo-random code which is assumed to be
modulating the carrier signal.

3.1. SNR for one pulse

The following multi-static radar equation for distributed targets derived from
Reference 9 is applied to compute the SNR in the case in which a single pulse is
considered:

1 /PG 1 A’ 1
SNRy = - (—= ) a4 -V (—G, —) (66)
2 \47R; 4R 4 KTB

where

SNR, is the signal-to-noise ratio, for a single pulse

P, is the transmitted power (by a GPS satellite, for example)

G, is the transmitter antenna gain

R, is the mean distance from transmitter (GPS satellite) to the receiver antenna
footprint on the Earth’s surface

oy is the mean normalised bistatic radar cross-section across the receiver antenna
footprint, evaluated in the directions of transmitter and receiver

A is the area of the receiver antenna footprint on the ground

R, is the mean distance from the receiver to the receiver antenna footprint on the
Earth’s surface

N is the wavelength of the radiation

G, is the gain of the receiver antenna

K is Boltzmann’s constant

T, is the system temperature, comprising thermal noise from the scene and
receiver noise

B is the signal bandwidth.

The various parameters appearing in Equation 66 are shown in Figure 8.
The system temperature T is comprised of the antenna temperature 7, due to
the thermal noise received from the observed scene by the receiver antenna, as

well as the receiver equivalent temperature 7, due to the noise generated by the
receiver itself:

T,=T,+T, (67

The receiver equivalent temperature can be expressed in terms of the noise figure of
the receiver F as

T, = (F-1T, (68)
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Figure 8. System geometry used in the
computation of the signal-to-noise ratio

where 7,=290 K is the standard room temperature.
Inserting Equation 68 into Equation 67, we have

T, =T, + (F-1T, (69)

As T, will generally be lower than about 300 K, and in order to be conservative in
the computation of the SNR, we can assume that

T, =~ T (70)
and in this case the system temperature appearing in Equation 66 becomes
T, = FT, an

On the other hand, the receiver antenna gain can be related to the illuminated area by

G, = - (72)

# being the incidence angle.
Substituting Equations 71 and 72 into Equation 66, the signal-to-noise ratio
becomes

S;/4 cos 0 1
SNR = (——=) o, (- (73)
2KT,BIN? F

where §; represents the incident power density on the ground

s PG,

" anR? 74

Looking at Equation 74 in more detail, three contributions can be identified on the

right-hand side:

— The first term is recognised as the ratio of the incident power to the thermal noise
power per unit area per unit solid angle’. This term is governed mainly by the
equivalent isotropic radiated power of the transmitter, the distance from
transmitter to target, and the bandwidth of the system.
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— The second contribution corresponds to the normalised bistatic radar cross-section,
averaged over the receiver antenna footprint. It therefore depends on the ocean
surface scattering characteristics. A more refined expression for this quantity is
shown below.

— The third term represents the contribution of the receiver system, given by its noise
figure.

We have to recall however that in the derivation of Equation 74 the brightness
temperature of the Earth’s surface 7, was assumed to be equal to T,=290K. In
general, the antenna temperature 7, will be lower than 290 K and a better SNR will
result as compared to the one computed in this section.

So far we have not needed either the altitude or the velocity of the platform which
carries the receiver for the computations. Thus the result obtained for the SNR in
Equation 74 is valid for both spaceborne and airborne receivers.

The rest of this section is dedicated to computing a more detailed expression for
the normalised bistatic radar cross-section averaged over the receiver antenna
footprint.

As will be explained later, this system is a pulse-limited one in the sense that the
portion of ocean surface that contributes to build up the output at a particular time-
resolution cell in the instrument is much smaller than the receiver antenna footprint.
If a is the pulse-limited footprint, then the normalised bistatic radar cross-section,
~ averaged over the antenna receiver footprint, can be written as

o, = o5 (X)da (75)

™| =

ae.

where ¢, (%) is the normalised bistatic radar cross-section of the elemental area da.

In the section dedicated to the description of the measurement of the ocean
altimetry, it will be shown that the pulse-limited footprint is very small compared to
the target’s distance from either the receiver or transmitter. We can therefore neglect
the variation in the normalised bistatic radar cross-section due to variations in the
target-receiver and target-transmitter directions across the pulse-limited footprint. In
other words, the normalised bistatic radar cross-section op(x) in Equation 75 is
constant and can be taken out of the integral

o, = [—1 o : ' (76)

A theorem of bistatic radar theory states that the normalised bistatic radar cross-
section of a target is equal to the normalised monostatic radar cross-section in the
bisector direction of the transmitter and receiver directions, when the target is
sufficiently smooth®. Although the validity of this hypothesis depends in the case of
the ocean surface on the sea state, we will assume in the following computations that
it holds reasonably well.

Assuming that the theorem of bistatic radar theory can be applied, and because we
are dealing with reflections originating from a small area a around the point of
specular reflection, we can state that in the normalised bistatic radar cross-section o,
is equal to the normalised monostatic radar cross-section g, at an incidence angle of
0°, i.e. in the nadir direction:

o, = 0o(0) (77

Substituting Equation 77 into Equation 76 we find the expression sought for the
normalised bistatic radar cross-section averaged over the receiver antenna
footprint, namely

a
=~ (0 (78)
dy 1 00( )
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Figure 9. Geometry used in the computation
of the Doppler bandwidth and the integration
time of the correlators. The width of the
pulse-limited footprint is p,;, around the point
of specular reflection
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and inserting Equation 78 into Equation 73, the expression for the signal-to-noise ratio
corresponding to a single pulse becomes

. 1
VR = <S,/41r coszf)> (g) 00) <_> (79
2KT,BIN? ) \4 F

3.2. SNR for N pulses

The reflected signal is correlated with the direct signal in order to perform the
altimetry measurement. Each correlation is carried out over a time duration spanning
N code chips, which we have called ‘pulses’. As the correlation process is performed
coherently, an improvement by a factor of N is achieved on the single pulse signal-to-
noise ratio. Therefore, the signal-to-noise ratio at the output of the N-pulse correlator
will be’:

SNRy = SNRN (80)

where SNR, is the single pulse signal-to-noise ratio.

Now we shall provide an estimate of the number of pulses N that can be added
coherently by computing the coherence time of the signal. The latter is computed
taking into account the relative speed between the receiver and the target, but the
movement of the ocean surface is neglected as well as the contribution of the speed
of the transmitter.

Consider the geometry of the system as shown in Figure 9. The platform is moving
at a speed v relative to the target, which consists of the pulse-limited footprint a. As
will be shown in the section on the altimetry measurement, the pulse-limited footprint
has a nearly elliptical shape with its major axis oriented in the receiver to transmitter
direction. If we consider the transmitter in the direction perpendicular to the velocity
of the receiver as shown in the figure, the Doppler bandwidth B; of the signal
coming from the pulse-limited footprint will be’®

By = 2% (81)
AR,
where p, is the semi-minor axis of the pulse-limited footprint a, and R, is the
distance from receiver to target.
Neglecting the contribution to the relative speed of the movement of the ocean
surface and the transmitter, the coherence time 7, of the signal will therefore be
given by

1 AR,
T,.= — = — (82)
2Bd 2"{)“
to transmitter
receiver

|
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and the estimated number of pulses that can be coherently added will be

BT. \R,B
N="S=22

2 4vp,

(83)

3.3. Numerical example: GPS transmitters

The GPS signals are modulated by two pseudo-random codes, the Coarse
Acquisition (C/A) code and the Precision (P) code. The chip rate of the C/A code is
1 MHz and that of the P code is 10 MHz. Although the C/A code would lead to a
poor altimeter performance, the corresponding signal-to-noise ratio is presented for
completeness.

The computation of the signal-to-noise ratio in the case where the receiver is a LEO
satellite orbiting at an altitude of 700 km is shown in the table below.

Parameter C/A P Remarks

PG, 28 dBW 25 dBW GPS minimum plus 3 dB
R, 24x10% m 24x10% m

0 36° 36° Edge of swath

K 1.38x 107 W/K Hz 1.38x10™* W/K Hz

7, 290 K 290 K

B 2 MHz 20 MHz RF bandwidth

A 0.19m 0.19 m L1 carrier

F 2 dB 2 dB

a 27x54 km? 8.5%17 km? GPS elevation >40°
G, 37 dB 37 dB 4 m X4 m antenna*
A 43%53 km? 43 x53 km? Edge of swath

0y(0) 12 dB 12 dB ERS-1 altimeter
SNR, -9 dB —-32 dB Single pulse

R, 913 km 913 km Edge of swath

Oy 27 km 8.5 km GPS elevation >40°
v 7.5 km/s 7.5 km/s 700 km LEO altitude
7. 428 ps 1.36 ms

N 428 13600

SNRy 17.3 dB 9.3 dB N pulse

* If the transmitting power of the GPS system is increased by 5 dB as planned, the size of the receiving
antenna could be reduced to 2x2 m2. If an aircraft is considered, the antenna could be about one order
of magnitude smaller due to the longer coherence time.

The PARIS concept of using the combination of direct and reflected signals of 4. Ocean altimetry

opportunity to perform ocean altimetry is presented in this section. One of the possible
methods for retrieving the height of the ocean over the reference Earth ellipsoid from
the received signals is explained and applied for the case in which the transmitters are
the GPS satellites.

4.1. Measurement geometry and return waveform

As it was shown in the section dedicated to the iso-lines computation, the locus of
constant range points is defined by the intersection of one ellipsoid whose foci are at
the transmitter and receiver points and the Earth ellipsoid — in this context the model
of the Earth described in the World Geodetic System 84: WGS-84. The WGS-84
ellipsoid and several of the constant range ellipsoids are presented in Figure 10.
Taking as reference a particular chip code of the direct path signal, the first echo of
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Figure 10. Above: Censtant-delay loci, iso-
range lines and pulse-limited footprints.
Centre: Detail of sea surface: the size of the
pulse-limited footprint depends on the
Significant Wave Height (SWH). Below: Shape
of received power waveform. The model of a
nadir-looking echo waveform is assumed. An
adequate model for the bi-static case is still
required
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this very same chip code received from a reflection on the ocean surface corresponds
to a delay such that the associated constant-range ellipsoid is tangential to the Earth’s
geoid. This is based on a geometrical property of ellipsoids by which the pair of lines
starting from any point on the ellipsoid and passing through its foci form the same
angle with respect to the normal to the ellipsoid at that point’. This geometrical
property could be summarised as follows: at the point of specular reflection, the
normal to the Earth’s geoid and the normal to the constant-range ellipsoid are the
same.

The earliest return of the particular code chip will come from wave crests. As we
increase the delay, more reflecting facets will contribute to the signal, up to a point
at which the last edge of the code chip reaches the wave troughs'®. Beyond that point
the area illuminated by the code chip remains about the same, and the amplitude will
decay due only to either the shaping of the antenna pattern if it is narrow enough, or
the decay of the radar cross-section with increasing incidence angle (the theorem of
bistatic radar is taken into account here).

The average shape of the resulting waveform will be given by the convolution of
the point-target response of the system, the ocean-surface height distribution and the
calm-sea impulse response'’. The antenna footprint will generally be much larger
than the pulse-limited footprint.

3t
2t

t=0

Pulse limited footprint

Received 4
power

high SWH

calm sea
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The illuminated areas for different code chips, as well as the shape of the average
received waveform'’, are depicted in Figure 10, where it has been assumed that the
model for nadir-looking holds (a proper model for bistatic altimetry is needed). As
shown in this figure, the mid point of the rising edge of the received waveform does
not depend on the significant-wave-height level, but rather conforms closely to the
mean sea level. This point, which is the point of specular reflection, corresponds to .
a point on the geoid.

The concept for performing ocean altimetry with this system consists of deriving,
from the delay measurements, the precise coordinates of the point of specular
reflection on the geoid relative to the position of the receiver, in the Earth Centred
Earth Fixed coordinate frame defined by the WGS-84 system. The resulting receiver-
geoid relative vectors measured as the receiver moves along its orbit will provide a
rigid curved line which, once the orbit of the receiver has been accurately determined
in the same WGS-84 reference frame, will serve to retrieve the geoid height over the
reference WGS-84 Earth ellipsoid. It is also assumed that the receiver’s and
transmitters’ orbits have been precisely measured.

There are basically two error contributions to the determination of the relative
coordinates between the receiver and the point of specular reflection on the geoid as
illustrated in Figure 11. The first one, case (a) of the figure, is the uncertainty dr in
the measurement of the delay corresponding to the half-power point of the rising edge
of the received waveform. This gives a possible range of values dh along the normal
to the Earth ellipsoid and between two constant range ellipsoids, at +dr/2 and —d7/2
for the point of specular reflection on the geoid P;. The second one, presented in
case (b) of the same figure, is due to the so-called ‘deflection of the vertical’. The
deflection of the vertical at a point P, on the Earth’s surface is the angular difference
o between the normal to the Earth WGS-84 ellipsoid 7 and the normal to the geoid
n’ at that point. Due to this difference, which is assumed to be unknown, there is an
uncertainty ds in the location of the point of specular reflection P;. However, as we
shall demonstrate in the next section, the contribution to the vertical error from the
deflection of the vertical is negligible. We recall here that while the geoid is defined
as an equipotential surface, the Earth reference ellipsoid is just a geometrical model.
In the next section we will examine both sources of error in more detail to assess the
performance of the instrument.

The pulse-limited footprint is elliptic in shape, with its largest dimension oriented
in the plane of incidence. This dimension has been computed for the case of a receiver
aboard a LEO satellite at 700 km altitude, as a function of the elevation of the GPS
satellite over the local horizon of the receiver and the code (C/A or P) being used.
The arc length from the sub-receiver point to the point of specular reflection is given
as a reference. The results are shown in the following table:

GPS elevation Arc to specular point Pulse footprint length
(deg) (km) (km) (km)
C/A P
0 1551 42
10 1206 32
20 936 25
30 726 20
40 557 54 17
50 418 46 15
60 299 42 13
70 193 39 12
80 95 37 12
90 0 36 11

4.2. Vertical accuracy '
In Figure 12, we can locate the point of specular reflection on the geoid by three

coordinates: the relative time delay 7 between the reflected and the direct signal and
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(a)

(b)

Figure 11. Error contributions to the height
accuracy: (a) error in the measurement of the
relative time delay of the middle point of the
rising edge of the received waveform; (b)
deflection of the vertical effect, which is
negligible in the vertical direction

Figure 12. Three coordinates define the point
of specular reflection: 7, o; and a;, (« in the
figure). Errors in the measurement of these
three quantities affect the accuracy of the
height measurement
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the two angles «; and «, defining the deflection of the vertical. In the figure, only
one of the two « angles, the one contained in the plane of incidence, is shown for
simplicity. The first coordinate 7 is measured by the altimeter and fixes an ellipsoid
E in space. The « coordinates are given by the topography of the ocean surface and
define one single point on this ellipsoid for which the geoid and the ellipsoid E are
tangential (this is the condition for the specular reflection point as was explained in
a previous section). Thus, the height & of the geoid over the WGS-84 ellipsoid at the
point of specular reflection P, can be written as a function of 7, «; and ay:

h = h(z,0,000) (384)
Therefore the vertical accuracy of the altimeter is given by

oh oh oh
dh = —dr + —da; + —da, (85)
ar da, o

In the following computations we assume that the altimeter processes the reflected and
direct signals such that the delay corresponding to the specular reflection point is
measured with a precision given by dr. The specular reflection point, as already
explained, is a point on the geoid, which is the surface of mean sea level, and its
associated delay is determined by the half power point of the rising edge of the
received waveform. A particular method of combining the direct and reflected signals
so as to measure this delay is described in the section dedicated to the system
configuration.

The o angles depend directly on the shape of the geoid relative to the WGS-84
ellipsoid. The deflection of the vertical over the ocean is very small, in the order of

|
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da=107 rad or even less'”'", and for this reason, we shall see later that its effect

on the vertical accuracy can be discarded.
We will now calculate the partial derivatives appearing in Equation 85. For the
computation of d4/dr, from Figure 13, we can write

oh -

= (86)
dr  2cos @

where § is the incidence angle.
For the computation of 0i1/de; and dh/dcy,, from Figure 14 we have
oh 2R20{1
— = —— 87)
da; cos b
oh
— = 2R, (88)
80:2

where R, is the distance from the receiver to the target, as already defined.
Inserting Equations 86—88 into Equation 85, we find for the vertical accuracy

—cdr  2R,0} 5
dh = + + 2R,03 (89)
2 cos 0 cos 6

Because the very small « angles are squared in this expression, their contribution is
negligible, and therefore the vertical accuracy can be finally approximated by

dh = —cdr (90)

_2cos(9

to receiver . from transmitter

dh A B

to receiver from transmitter

b geoid

P ———
/

- was-84
ellipsoid
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Figure 13. Geometry used for the propagation

of delay-time errors into height errors

Figure 14. Geometry used for translating the

deflection of the vertical into height errors
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5. Instrument
configuration

Figure 15. Overall system configuration
realising the PARIS concept. Several sources
of opportunity generate the same number of
reflections. A receiver provided with an
upward-looking antenna to receive the direct
signal and a downward-looking antenna to
collect reflected energy can perform height
measurements at the pulse-limited footprints of
the reflections. The antenna-limited footprint
is larger than the pulse-limited footprint.
Depending on the power-link budget. a
phased-array antenna may be necessary, to
direct the beam sequentially to all reflections.
The bi-static radar cross-section at the
reflections is close to the monostatic radar
cross-section measured at nadir
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Let us assume that there are several transmitters of opportunity whose signals can
be used in the way explained in the previous sections. Then for each transmitter above
the receiver local horizon, there exists a point of specular reflection on the geoid, as
shown in Figure 15. In general, the power available from the opportunity signals is
likely to be low, and therefore the down-looking antenna of the altimeter must have
enough directivity to achieve the required signal-to-noise ratio. The size of the down-
looking antenna is a major issue and depends directly on the power level of the
opportunity signal.

The normalised monostatic radar cross-section o, of the ocean for the range of
frequencies of interest is large at nadir, but decreases rapidly with increasing
incidence angle’. The rate of change of the radar cross-section with the incidence
angle depends also on the significant wave height and the wind speed. However, as
already described, the instrument operates in a pulse-limited mode for which the
footprint is so small that variations in radar cross-section with incidence angle can be
neglected. Applying the theorem of bistatic radar theory®, it was shown that the
normalised bistatic radar cross-section in the case of specular reflection is the same
as the normalised monostatic radar cross-section at nadir. Therefore, as seen in Figure
15, every pulse-limited footprint corresponding to every transmitter will present a
large normalised bistatic radar cross-section to the receiver. Depending on the
directivity of the receiver antenna, the antenna footprint may enclose only one of the
pulse-limited footprints and the beam has to be pointed to each of the other specular
points, as depicted in the figure. In this case, the receiver down-looking antenna must
be a phased-array capable of steering the beam over a certain area on the ocean
surface. This area must be large enough to include the points of specular reflection
from a number of transmitters. In the case where the receiver is a LEO satellite at
700 km altitude and the transmitters are the GPS satellites, all specular reflection
points generated by GPS satellites at elevations higher than 40° correspond to off-
nadir angles smaller than 40°. Therefore, in this example the antenna should be
designed to steer the beam within a 40° half-angle cone with its axis parallel to nadir.

The instrument is assumed to be also provided with an up-looking antenna set to
receive the direct signals from the transmitters. These signals are used as reference
in the processing of the reflected signals and, in fact, they provide the response that
would be measured by the down-looking antenna from a point target®. For this
reason, the processing of the reflected signals is accomplished by correlating them
with the direct signal. A block diagram of this type of signal processing is shown in -
Figure 16, where it is assumed that the transmitted signals are modulated with a
pseudo-random code. The signal processor of the instrument is able to compute the
expected Doppler frequency of the reflected signal from the positions and velocities
of the receiver and the transmitter, which are supposed to be either known or
computed. The direct signal is first down-converted and then frequency-shifted

]
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according to the Doppler shift computed by the processor, in order to match the
Doppler frequency of the reflected echo before correlation between the two signals
takes place’. The signal processor also determines an approximate value of the
relative delay between the direct signal and the reflected signal originated at the point
of specular reflection.

The direct signal, down-converted and frequency-shifted, is then delayed by this
amount except for a number of code chips equal to n/2, with n being the number of
chips defining the span of delays within which the mean sea level is expected to fall.
This frequency-shifted and delayed replica of the direct signal enters a bank of n
correlators connected to a tapped delay line of n taps. The second input to the
correlators is directly the reflected signal received through the down-looking antenna,
after down-conversion. Each correlator correlates a delayed replica of the direct
signal with the reflected signal. As there are n correlators connected through n delay
taps, the correlation at n different time positions is obtained. The output of each
correlator is finally detected to provide a sample of the received power waveform
depicted in Figure 10 at a particular time resolution cell. Each of these samples can
be interpreted as the amount of power reflected from the ocean surface at a given
range relative to the direct signal.

The detected samples will be contaminated by thermal noise and speckle, with
speckle being the dominant source of noise if the system has been properly designed
with respect to the signal-to-noise ratio. Speckle is caused by the different rate of
change of the phase of the components of the reflected signal corresponding to
different portions of ocean surface'®. Assuming a random distribution of the phase of
the different components and following the central limit theorem, the amplitude of the
output signal of each correlator will have a Gaussian amplitude distribution, and hence
the power of the output signal will have a negative exponential distribution. The mean
value of the power will therefore be the same as its standard deviation, and time-
averaging over a number of samples will be necessary to improve the estimation of
the mean power. In order to achieve an accuracy of the level shown in the following
table, and according to the following equation giving the standard deviation of the
averaged delay o, ,,, in terms of the sample time resolution ¢,=2/B and the number
of samples being averaged M|,

e = —/—— 91
T,ave m B\/ﬁ ( )

a minimum of 550 samples would be required, which corresponds in the scenario of
LEO and GPS satellites being considered to 0.77 s, (M,T.) 5.8 km on the ocean
surface, or 38% of the pulse-limited footprint.

In Figure 17, typically two main feedback loops would be used, one to fix the power
difference between the noise floor and the flat top of the received waveform, and
another to maintain the received power waveform at the same location with respect

GPS elevation Arc to specular point Vertical precision

(deg) (km) (cm)
0 1551 231
10 1206 162
20 936 124
30 726 101
40 557 87
50 418 77
60 299 71
70 193 67
80 95 65
90 0 64
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Figure 16. Conceptual block diagram of the
instrument: the signal received via the
downward-looking antenna is correlated with
delayed replicas of the direct-path signal
received via the upward-looking antenna. The
output of the bank of correlators is detected,
forming the samples of the echo waveform.
Time averaging is performed at sample level
to reduce speckle noise

Figure 17. Above: Model for received echo
(nadir-looking model assumed). Below: Output
of the instrument, for the numerical example
of a LEO satellite and the GPS constellation,
showing noise, early, middle and late samples
used for the signal processing and tracking
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to the time-resolution cells'. The first loop would be implemented by making use of
one sample N, on the noisy heading of the waveform and several other samples
Sy —§; spread symmetrically around the half-power point P, of the rising edge of the
waveform. ranging from the noise floor to the flat top of the waveform. The second
loop would be implemented by using an early E, a middle M and a late L sample with
respect to the half-power point of the rising edge of the waveform.

In addition to the feedback loops, an altimeter tracker implemented within the signal
processor would adjust the delay to be applied to the direct signal before correlating
it with the reflected signals so as to have the middle sample with the same power level
as the mean power of the signal in the range between the noise and the flat top
samples. The delay adjustments would constitute the measurement of the mean sea
level, while the precision of the altimeter would be given by the error signal driving
the tracker.

An instrument of the kind described would perform the sample averaging onboard,
and would deliver to the host platform the power level of all the samples included in
one complete waveform, along with telemetry data and in digital form. The number
of samples per waveform is basically dependent on the bandwidth of the system, and
so is the instrument data rate. In the LEO and GPS satellites scenario, one waveform
could consist of 7 samples and the data rate would be about 5 K samples per second
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per transmitter. The bandwidth in this scenario is too small to measure the slope of
the rising edge of the received waveform properly. However, the concept is valid for
measuring this slope provided that the bandwidth of the opportunity signal is
sufficient, and therefore measurements of significant wave height and wind speed
could also be performed in such a case.
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